Offline mapping in Windows applications using C#

Imagine a windows desktop computer without internet access that should have the ability to show maps and perform spatial operations(routing, navigation, searching etc), this would require offline mapping application.

Creating an offline mapping solution for windows application is rare and should be avoided. I say, should be, because there are alternatives to developing an offline mapping solution from the scratch. Having said that, there are some possible ways for doing it. Few things to consider are:

Data

Data in GIS applications is of type Vector or Raster. We will be dealing with Vector data in this article. (See Vector vs Raster data in GIS)

One of the starting point is to collect offline data.

  1. You can ask TeleAtlas, NAVTEQ to provide offline data. This will involve licencing fee and NDA. This option could cost a lot
  2. The other options is to use http://www.openstreetmap.org, Download its data and then work with it.

The other thing to consider is the data format. There are number of formats available to work in GIS applications. You can either use a proprietary one, or Shapefile format which is ESRI standard.

Application Development

After selecting data, the next step is to plan for application development. There should be three major steps involved in development of a mapping application.

  • Reading Data
  • Rendering data (geometries)
  • Optimization

First step starts with writing code to read/access data from offline source. This could be a ShapeFile or data stored in Spatial database like PostGIS, Spatialite etc. The approach should be to read data and store in appropriate objects for point, line and polygons.

Once the data is read into objects, the next step is rendering that data on screen, This involves converting geographical coordinates to 2D or 3D map projections on screen. Here is an excellent code project article about it: Writing GIS and Mapping Software for .NET. After transformation of data, the transformed objects are converted to geometry objects and placed on WinForm or WPF window. This might involve a bit of reading about GDI, DirectX, OpenGL or a simpler version of System.Drawing in WinForm or geometry drawing in WPF.

Later comes the optimization part. Map data is usually huge and consists of millions of geometries for a city/metropolis. The optimization in reading and more importantly rendering usually requires lots of work.

Layering

There has to be a layering technique involved and then how to show a limited number of geometries. Take an example of google maps, When you are viewing google maps at country level, you can only see city names, city/state/province boundaries, major roads etc, but it doesn’t show street level details. But as soon you start zooming in, one can see the details getting higher and higher. A similar approach could be used in displaying offline maps.

  • Layers for City names (major Point of interest) (Points)
  • Layer for Country/City polygon (Polygon)
  • Layer for major road networks (Line strings)
  • Layer for intercity highways (Line strings)
  • Layer for street level roads (Line strings)
  • Point of interest at street level (Points)

Once the data is setup in these layers, the application can use defined rules to show layer at a specific zoom level. Remember showing geometries is resource intensive, so only show that would be useful at a particular zoom level. For example if zoom levels are defined 1 to 10, where 10 is the highest zoom level, where the whole country would be visible in the application, then at zoom level 10 there is no need to show street level roads or even inter city highways.

Geometry Normalization

After determining the layers and their respective zoom level, there is another optimization technique that I have used in a similar application. That is to normalize geometrical data. For example a major highway line string contains 1 million points connected with each other forming a line string. The reason that particular geometry has so many points is to provide accurate information for navigation, but, these many points would be irrelevant if the major highway is show at the highest zoom level. A normalized geometry object could be used.

normailzedroad

The diagram above shows original line string in blue colour, which would have a lot of points, and the red geometry shows normalized geometry with lot fewer points. This could be used at the highest zoom level for showing highways.

Open Source alternatives

There are few open source projects which does the exact same thing and much more. They are:

There are other controls which are available for some licencing fee:

C# – There is no “Pass by Reference” without ref keyword

One common question that I see on Stack Overflow is about parameter passing in C#. A common statement for parameter passing sounds like:

Reference types are passed by reference and value types are passed by value

This is incorrect.

Before jumping on the details for parameter passing, I would ask you to visit this excellent article by Jon Skeet on parameter passing in C#. 

I will concentrate on parameter passing with reference types, as this is the main reason for confusion.

Consider the following example

using System;
namespace TestApplication
{
	class Program
	{
		static void Main(string[] args)
		{
			Person personMain = new Person { Name = "X", Id = 1 };
			ModifyPersonObject(personMain);
			Console.WriteLine(personMain.Name);	// prints "New Person Name"

			ModifyPersonObjectFail(personMain);
			Console.WriteLine(personMain.Name);	// still prints "New Person Name"

			Console.ReadLine();
		}

		static void ModifyPersonObject(Person person)
		{
			person.Name = "New Person Name";
		}

		static void ModifyPersonObjectFail(Person person)
		{
			person = new Person { Name = "Some Name", Id = 2 };
		}
	}

	class Person
	{
		public int Id { get; set; }
		public string Name { get; set; }
	}

}

In the above code a person object is created with initial values as “Name: X and Id: 1”. Then a method is called which is suppose to modify that person object. That method receives a paramter of type “Person” and modifies its Name property. The effect is visible after the call to method is completed.

Next, that object is send to another method which is suppose to assign a completely new “Person” object to it. But that fails and after the call to “ModifyPersonObjectFail” method is completed, the object “personMain” is still holding hold values.

Why is this happening.

A reference is kind of a pointer to some memory location holding the actual data. For example in our above code “personMain” is a reference which is pointing to a person object in memory with values Name: X and Id: 1. So in the first method call: “ModifyPersonObject(personMain);”, the parameter in the method is pointing to same memory location.

Step1

So, both “personMain” and “person” (parameter) are pointing to same location, thus changing “Name” property in the method actually modifies the value in object storage memory. .

Next is the method call to “ModifyPersonObjectFail(personMain);”, At the entry point in the method, both “personMain” and paramter “person” is pointing to same object, just like the diagram above, but this method has a line:

person = new Person { Name = "Some Name", Id = 2 };

which is assigning a new object to the parameter “person”. Now here is the important part, this line is actually creating a new object in object storage memory and assigning its address/reference  to the parameter. The original object in memory remains unaffected.

step2

Therefore, when the call to method “ModifyPersonObjectFail” is completed the original object in the caller remains unaffected.

So to conclude here is the main statement

There is no pass by reference in C# without “ref” keyword. In parameter passing address of the object (or reference) is only passed.

If you have method like:

static void ModifyPersonObjectByReference(ref Person person)
{
	person = new Person { Name = "Some Name", Id = 2 };
}

and then call that method like:

static void ModifyPersonObjectByReference(ref Person person)
{
	ModifyPersonObjectByReference(ref personMain);
}

then this would be somewhat pure pass by reference, as now even assigning a new value to parameter would be visible in caller.

C# 6.0 – Changes in New Features

(The Roslyn project and documentation has been moved to GitHub)

C# 6.0 is the new upcoming version of C#, it is part of open source compiler platform (Roslyn) by Microsoft. The new compiler is written in C# as well, (How is that possible see this and this)

There are many new features which are planned to be released with the new version, One can find the detailed documentation about them here.

Here are few which have changed from their initial planned version.

Static Import

This feature allows a user to access (allowable) static members of a class/type, without a qualifying class name.

Consider the example of

Console.WriteLine("Some test message");

With the static import, we would be able to to call method “WriteLine” directly without using the class name “Console”.

The current version of C# 6.0 supports Static Import but with the explicit keyword “static” in “using” statement.

using static System.Console;
namespace TestApplication
{
	class Program
	{
		static void Main(string[] args)
		{
			WriteLine("My test message");
		}
	}
}

 The previous planned version for C# 6.0 had static import feature without “static” keyword in using directive.  

“static import” feature might case a breaking change in very rare situation. Consider the following example with respect to “Extension Methods”

Consider the following code example in prior version of C#.

List<int> myList = new List<int> { 1, 2, 3, 4, 5, 6, 7 };
var query = Enumerable.Where(myList, r => r % 2 == 0);

In the code above extension method “Where” is called like a static method, instead of like an instance method on “Enumerable<T>”

But if we use “static” import feature, one would thought that we should be able to do something like:

using static System.Linq.Enumerable;
//.... class definition 
List<int> myList = new List<int> { 1, 2, 3, 4, 5, 6, 7 };
var query = Where(myList, r => r % 2 == 0); //ERROR! 

But it will error out with

The name ‘Where’ does not exist in the current context

Since “Where” is defined as an extension method. But using “Enumerable.Range” like below will not cause any error as “Range” is an ordinary static method and not an extension method. :

var items = Enumerable.Range(0, 10);
var items2 = Range(0, 10);

So now changing an ordinary static method to extension method could cause a breaking change, which wasn’t the case with prior versions of C#.

Null-Conditional Operator

Only the name/term has been changed, earlier version had Null Propagation operator. The feature is useful in a way that it provides a safe navigation operator on an object properties in case of the object being null.

int[] myArray = null;
//...some code
int? length = myArray?.Length;